Selecting an appropriate metric for the processing of Diffusion Tensor Images

نویسندگان

  • Anne Collard
  • Rodolphe Sepulchre
چکیده

For a few years, Diffusion Tensor Imaging (DTI) has received much attention. This new method of imaging allows non-invasive quantification of the diffusion of water in the brain. The formalism introduced by Basser [1] enables to assess the diffusion in each voxel (small cubes) of the brain. Conceptually, a diffusion tensor D is assigned to each voxel. The anisotropy of the tensors is then used to numerically reconstruct nervous fibers of the brain. This new development of brain imaging raises new challenges for its processing. Classical image processing algorithms are indeed developed for scalar images. The processing of Diffusion Tensor Images, which can be viewed as symmetric positive definite matrices fields, thus requires the definition of novel algorithms. One common feature of these algorithms is their use of a distance function between images. At a finer level, a distance function between tensors has to be defined. In this work, we propose a novel metric which is particularly appropriate for the processing of DTI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

An anisotropy preserving metric for DTI processing

Statistical analysis of Diffusion Tensor Imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies that have shown that a Riemannian framework is appropriate to address these challenges, the present paper ...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Anisotropy preserving interpolation of diffusion tensors

The growing importance of statistical studies of Diffusion Tensor Images (DTI) requires the development of a processing framework that accounts for the non-scalar and nonlinear nature of diffusion tensors. This motivation led a number of authors to consider a Riemannian framework for DTI processing because a Riemannian structure on the data space is sufficient to redefine most processing operat...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010